Estimating GARCH Models: When to Use What?
نویسندگان
چکیده
The class of GARCH models has proved particularly valuable in modelling time series with time varying volatility. These include financial data, which can be particularly heavy tailed. It is well understood now that the tail heaviness of the innovation distribution plays an important role in determining the relative performance of the two competing estimation methods, namely the maximum quasilikelihood estimator based on a Gaussian likelihood (GMLE) and the logtransform based least absolutely deviations estimator (LADE); see Peng and Yao (2003). A practically relevant question is when to use what. We provide in this paper a solution to this question. By interpreting the LADE as a version of the maximum quasilikelihood estimator under the likelihood derived from assuming hypothetically that the log squared innovations obey a Laplace distribution, we outline a selection procedure based on some goodness-of-fit type statistics. The methods are illustrated with both simulated and real data sets. Although we deal with the estimation for GARCH models only, the basic idea may be applied to address the estimation procedure selection problem in a general regression setting. Some key words: Estimation procedure selection; GARCH; Gaussian likelihood; Heavy tail; Laplace distribution; Least absolute deviations estimator; Maximum quasilikelihood estimator; Time series.
منابع مشابه
Risk Management in Oil Market: A Comparison between Multivariate GARCH Models and Copula-based Models
H igh price volatility and the risk are the main features of commodity markets. One way to reduce this risk is to apply the hedging policy by future contracts. In this regard, in this paper, we will calculate the optimal hedging ratios for OPEC oil. In this study, besides the multivariate GARCH models, for the first time we use conditional copula models for modelling dependence struc...
متن کاملSupergaussian Garch Models
In this paper, we introduce supergaussian generalized autoregressive conditional heteroscedasticity (GARCH) models for speech signals in the short-time Fourier transform (STFT) domain. We address the problem of speech enhancement, and show that estimating the variances of the STFT expansion coefficients based on GARCH models yields higher speech quality than by using the decision-directed metho...
متن کاملEstimating and forecasting volatility of stock indices using asymmetric GARCH models and (Skewed) Student-t densities
This paper examines the forecasting performance of four GARCH(1,1) models (GARCH, EGARCH, GJR and APARCH) used with three distributions (Normal, Student-t and Skewed Student-t). We explore and compare different possible sources of forecasts improvements: asymmetry in the conditional variance, fat-tailed distributions and skewed distributions. Two major European stock indices (FTSE 100 and DAX 3...
متن کاملA Closer Look at the Relation between GARCH and Stochastic Autoregressive Volatility
We show that, for three common SARV models, fitting a minimum mean square linear filter is equivalent to fitting a GARCH model. This suggests that GARCH models may be useful for filtering, forecasting, and parameter estimation in stochastic volatility settings. To investigate, we use simulations to evaluate how the three SARV models and their associated GARCH filters perform under controlled co...
متن کاملEfficient Factor GARCH Models and Factor-DCC Models
We reveal that in the estimation of univariate GARCH or multivariate generalized orthogonal GARCH (GO-GARCH) models, maximizing the likelihood is equivalent to making the standardized residuals as independent as possible. Based on that, we propose three factor GARCH models in the framework of GO-GARCH: independent-factor GARCH exploits factors that are statistically as independent as possible; ...
متن کامل